Copied to
clipboard

G = C32×D9order 162 = 2·34

Direct product of C32 and D9

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C32×D9, C33.5S3, C93(C3×C6), (C3×C9)⋊14C6, (C32×C9)⋊3C2, C3.1(S3×C32), C32.15(C3×S3), SmallGroup(162,32)

Series: Derived Chief Lower central Upper central

C1C9 — C32×D9
C1C3C9C3×C9C32×C9 — C32×D9
C9 — C32×D9
C1C32

Generators and relations for C32×D9
 G = < a,b,c,d | a3=b3=c9=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 128 in 52 conjugacy classes, 24 normal (8 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C9, C32, C32, C32, D9, C3×S3, C3×C6, C3×C9, C3×C9, C33, C3×D9, S3×C32, C32×C9, C32×D9
Quotients: C1, C2, C3, S3, C6, C32, D9, C3×S3, C3×C6, C3×D9, S3×C32, C32×D9

Smallest permutation representation of C32×D9
On 54 points
Generators in S54
(1 17 20)(2 18 21)(3 10 22)(4 11 23)(5 12 24)(6 13 25)(7 14 26)(8 15 27)(9 16 19)(28 43 49)(29 44 50)(30 45 51)(31 37 52)(32 38 53)(33 39 54)(34 40 46)(35 41 47)(36 42 48)
(1 23 14)(2 24 15)(3 25 16)(4 26 17)(5 27 18)(6 19 10)(7 20 11)(8 21 12)(9 22 13)(28 46 37)(29 47 38)(30 48 39)(31 49 40)(32 50 41)(33 51 42)(34 52 43)(35 53 44)(36 54 45)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 30)(2 29)(3 28)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 45)(18 44)(19 52)(20 51)(21 50)(22 49)(23 48)(24 47)(25 46)(26 54)(27 53)

G:=sub<Sym(54)| (1,17,20)(2,18,21)(3,10,22)(4,11,23)(5,12,24)(6,13,25)(7,14,26)(8,15,27)(9,16,19)(28,43,49)(29,44,50)(30,45,51)(31,37,52)(32,38,53)(33,39,54)(34,40,46)(35,41,47)(36,42,48), (1,23,14)(2,24,15)(3,25,16)(4,26,17)(5,27,18)(6,19,10)(7,20,11)(8,21,12)(9,22,13)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,30)(2,29)(3,28)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,45)(18,44)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,54)(27,53)>;

G:=Group( (1,17,20)(2,18,21)(3,10,22)(4,11,23)(5,12,24)(6,13,25)(7,14,26)(8,15,27)(9,16,19)(28,43,49)(29,44,50)(30,45,51)(31,37,52)(32,38,53)(33,39,54)(34,40,46)(35,41,47)(36,42,48), (1,23,14)(2,24,15)(3,25,16)(4,26,17)(5,27,18)(6,19,10)(7,20,11)(8,21,12)(9,22,13)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,30)(2,29)(3,28)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,45)(18,44)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,54)(27,53) );

G=PermutationGroup([[(1,17,20),(2,18,21),(3,10,22),(4,11,23),(5,12,24),(6,13,25),(7,14,26),(8,15,27),(9,16,19),(28,43,49),(29,44,50),(30,45,51),(31,37,52),(32,38,53),(33,39,54),(34,40,46),(35,41,47),(36,42,48)], [(1,23,14),(2,24,15),(3,25,16),(4,26,17),(5,27,18),(6,19,10),(7,20,11),(8,21,12),(9,22,13),(28,46,37),(29,47,38),(30,48,39),(31,49,40),(32,50,41),(33,51,42),(34,52,43),(35,53,44),(36,54,45)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,30),(2,29),(3,28),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,45),(18,44),(19,52),(20,51),(21,50),(22,49),(23,48),(24,47),(25,46),(26,54),(27,53)]])

C32×D9 is a maximal subgroup of   D9⋊He3  D9⋊3- 1+2  (C32×C9)⋊S3

54 conjugacy classes

class 1  2 3A···3H3I···3Q6A···6H9A···9AA
order123···33···36···69···9
size191···12···29···92···2

54 irreducible representations

dim11112222
type++++
imageC1C2C3C6S3D9C3×S3C3×D9
kernelC32×D9C32×C9C3×D9C3×C9C33C32C32C3
# reps118813824

Matrix representation of C32×D9 in GL3(𝔽19) generated by

700
010
001
,
100
070
007
,
100
093
0017
,
1800
0618
01613
G:=sub<GL(3,GF(19))| [7,0,0,0,1,0,0,0,1],[1,0,0,0,7,0,0,0,7],[1,0,0,0,9,0,0,3,17],[18,0,0,0,6,16,0,18,13] >;

C32×D9 in GAP, Magma, Sage, TeX

C_3^2\times D_9
% in TeX

G:=Group("C3^2xD9");
// GroupNames label

G:=SmallGroup(162,32);
// by ID

G=gap.SmallGroup(162,32);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-3,1803,138,2704]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^9=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽